Fully indecomposable non-convertible (0,1)-matrices

Mikhail Budrevich
(Moscow State University)
Gregor Dolinar
(University of Ljubljana)
Bojan Kuzma
(University of Primorska)
Alexander Guterman
(Moscow State University)

Moscow, Russia
28 August 2015
Notion of convertibility

Definition
Let $A = (a_{ij})$ be a square matrix of order n and S_n is a symmetric group on n elements, then

$$
\det(A) = \sum_{\sigma \in S_n} \text{sign}(\sigma) \prod_{i=1}^{n} a_{i\sigma(i)}
$$

$$
\text{per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i\sigma(i)}
$$

Definition
Matrix $A \in M_n(0, 1)$ is convertible if there is matrix $X \in M_n(\pm 1)$ such that $\text{per}(A) = \det(A \circ X)$, where \circ is Hadamard multiplication of matrices.
Examples of convertibility

Example

\[
\text{per} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \det(\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix})
\]

Example

Matrix \(J_3 \) is non-convertible.

Example

- Number of domino tiling’s
- Number of derangements of order \(n \)
- Ménage numbers
- Number of perfect matching in bipartite graph
Gibson bounds

Definition
Let $\Omega_n \in \mathbb{Z}_n$. We say that Ω_n is upper Gibson bound of convertibility for matrices of order n if every matrix $A \in M_n(0,1)$ with $\text{per}(A) > 0$ and more than Ω_n positive elements is non-convertible.

Definition
Let $\omega_n \in \mathbb{Z}_n$. We say that ω_n is lower Gibson bound of convertibility for matrices of order n if every matrix $A \in M_n(0,1)$ with less than ω_n positive elements is convertible.
Theorem (Gibson)

Let \(A \in M_n(0,1) \), \(n \geq 3 \) and \(\text{per}(A) > 0 \). If matrix \(A \) is convertible then \(\nu(A) \leq \frac{n^2 + 3n - 2}{2} = \Omega_n \). If \(\nu(A) = \Omega_n \) and \(A \) is convertible then \(A \) is permutationally equivalent to \(G_n \), where

\[
G_n = \begin{pmatrix}
1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 1 & 1 & \ldots & 1 \\
1 & 1 & 1 & \ldots & 1
\end{pmatrix}
\]

Theorem (Little || Dolinar, Guterman, Kuzma)

Let \(A \in M_n(0,1) \) and \(n \geq 3 \). If \(\nu(A) < \omega_n = n + 6 \) then \(A \) is convertible.
Fully indecomposable matrices

Definition

Matrix A is partially decomposable if there are permutation matrices P, Q such that PAQ is upper block triangle matrix.

Definition

If matrix A is not partially decomposable then it is fully indecomposable.

Example

Let

$$A = \begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{pmatrix}$$

The matrix A is partially decomposable and the matrix B is fully indecomposable.
Convolution

Definition
Let $A \in M_n(0,1)$ and let the 1-st row of A has exactly two non-zero entries a_{11}, a_{12}. Then the convolution of A in the 1-st row is the following matrix $S_1(A) \in M_{n-1}$,

$$S_1(A) = \begin{pmatrix}
\max(a_{21}, a_{22}) & a_{23} & \ldots & a_{2n} \\
\max(a_{31}, a_{32}) & a_{33} & \ldots & a_{3n} \\
\ldots & \ldots & \ldots & \ldots \\
\max(a_{n1}, a_{n2}) & a_{n3} & \ldots & a_{nn}
\end{pmatrix}$$

Theorem
Let $A \in M_n(0,1)$. Let the first row of A have exactly two non-zero entries: a_{11}, a_{12}, and let $S_1(A)$ be the convolution of A. Then A is convertible if and only if $S_1(A)$ is convertible.
Lower bound for fully indecomposable matrix

Theorem

Let $A \in M_n(0, 1)$ and $\mu(A)$ be its vector of row sums. Assume that all entries of $\mu(A)$ except perhaps at most two are less than or equal to 2. Then A is convertible.

Theorem

Let $A \in M_n(0, 1)$ be fully indecomposable. If $\nu(A) \leq 2n + 2$ then A is convertible.
Exactness of the bound

Example

Matrix

\[
\begin{pmatrix}
1 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 1 & 1 \\
0 & 0 & 0 & \ldots & 1 & 1 & 1 \\
1 & 0 & 0 & \ldots & 0 & 1 & 1 \\
\end{pmatrix}
\]

has $2n + 3$ ones, fully indecomposable and non-convertible.
Symmetric matrices with zero diagonal

Theorem
Suppose a symmetric matrix $A = (a_{ij}) \in M_n(0,1)$ with the zero diagonal has at most $2n + 4$ nonzero entries, and has in each row at least 2 nonzero entries. Then A is convertible.

Theorem
Suppose a symmetric fully indecomposable matrix $A = (a_{ij}) \in M_n(0,1)$ with the zero diagonal has at most $2n + 4$ nonzero entries. Then A is convertible.
Exactness of the bound for symmetric matrices

Theorem

Let \(n \geq 5 \) be an odd integer, \(J = \sum_{i=1}^{n-1} E_{i,i+1} \) be an upper-triangular Jordan nilpotent and consider a symmetric matrix

\[
A = (J + J^{n-3} + J^{n-1}) + (J + J^{n-3} + J^{n-1})^t
\]

with vanishing diagonal and \(v(A) = 2n + 6 \). The matrix \(A \) is odd-sized fully indecomposable \((0,1)\) symmetric matrices with vanishing diagonal.

Example

For \(n = 5 \)

\[
\begin{pmatrix}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0
\end{pmatrix}
\]
Main blocks

Definition
Let $Q_k \in M_k(0, 1)$ denote the following matrix:

$$q_{ij} = \begin{cases}
1, & \text{if } i + j = k \text{ or } i + j = k + 1; \\
0, & \text{otherwise.}
\end{cases}$$

Example

$$Q_1 = (1) \quad Q_2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \quad Q_3 = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad Q_4 = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
Non-convetible fully indecomposable (0,1)-matrices with 2n + 3 ones

Theorem

Let $A \in M_n(0,1)$, $\nu(A) = 2n + 3$ and A is non-convetible fully indecomposable (0,1)-matrix. Then there is matrix $K \in M_3(\mathbb{Z})$ with non-negative elements and sum of elements is equal to $n - 3$ such that A is permutationally equivalent to matrix

$$
\begin{pmatrix}
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
a_{11} & O & O & Q_{k_{11}} & \cdots \\
a_{12} & O & Q_{k_{21}} & O & \cdots \\
a_{13} & Q_{k_{31}} & O & O & \cdots \\
b_1 & B_1 & O & O & \cdots \\
\end{pmatrix}
$$
Bipartite graphs

Definition
Graph $G = (V, E)$ is bipartied graph if $V = M \cup N$, $M \cap N = \emptyset$ and edge $e \in E$ is of the form $e = (n_i, m_j)$, where $n_i \in N$ and $m_j \in M$.

Definition
Matrix $A \in M_{n,m}(0,1)$ is adjacency matrix of bipartied graph $G = (V, E)$ if $a_{ij} = 1$ if and only if $e = (n_i, m_j) \in E$.
Graph description

Graph $K_{3,3}$

$k = k_1$
Thank you!

Mikhail Budrevich
mbudrevich@yandex.ru